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Algorithm � O��line synthesis

�� Extend�F � �F��

�� SupCN � �F � �FCN��

�� Design a supervisor o��line�

In Algorithm 
� Step � was described earlier� Step 
 calculates the supremal controllable
and normal sublanguage of E ���� We note that since in �F� all controllable events are
observable ��c � � � �o�� controllability and observability of a language is equivalent to
controllability and normality of that language� In step � a supervisor is designed o�	line in
the usual way ���� The supervisor thus obtained is �optimal� in the sense that it generates
the largest behavior possible as shown in the following theorem�

Theorem � The supervisor designed using Algorithm � is an optimal supervisor�

Two other approaches can be used for supervisor synthesis� The second approach is to
design a supervisor on	line instead of o�	line� The advantage of this approach is that the
computational complexity is linear at each step of event execution�

Algorithm � On�line synthesis

�� Extend�F � �F��

�� SupC� �F � �FC��

�� Design a supervisor on�line�

Step � is same as that of Algorithm 
� Step 
 calculates the supremal controllable
sublanguage of the legal language E� This can be done with linear complexity for a closed
language E� In Step �� we design a supervisor on	line using the results of ���� The resulting
supervisor will generate the supremal controllable and normal sublanguage of E� and hence
is also optimal� As shown in ���� the complexity at each step of event execution is linear�

In view of the way SupCN is calculated� we can modify Algorithm 
 by directly con	
verting F to a deterministic automaton F without adding the unobservable events ��� This
leads to our third approach�

Algorithm � Direct synthesis

�� Convert�F � F��

�� SupC�F � FC��

�� Design a supervisor o��line�

Procedure Convert that converts the nondeterministic automaton F into a deterministic
one F is standard ��� Each state in F is now a subset of states in F � We call such a state
�bad� if it contains a bad state of F � Step 
 computes the supremal controllable sublanguage�

We can show that the resulting supervised systems using Algorithm 
 and Algorithm �
are the same as far as traces in �� are concerned�

Theorem �� Let �� and �� be the supervisors obtained from Algorithm � and Algorithm ��
respectively� Then

L����R� � L����R��

The above results and algorithms can be generalized to non	closed case and will be
discussed in ����
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where jj denotes the synchronous composition�
Our goal is to synthesize a supervisor � such that� if possible�

��R � H�

To obtain a necessary and su�cient condition for the existence of such a supervisor� we
proceed as follows� First� we extend H to

H �� �� � f�g� P � fbg� �� p�� P ��

where the state b is called the �bad� state and the transition function � is given by

��p� �� ��

�
��p� �� if ��p� �� is de�ned�
b if ��p� �� is unde�ned�

Note that L�H� � �� and Lm�H� � L�H��
Next� we take the synchronous composition of R and H to obtain�

F � Acc�RjjH� � Acc�� � f�g� F� �� fo� Fb��

whereAcc��� denotes the accessible component� The state set F � Q��P�fbg� is partitioned
into two classes� �good� states Fg � Q�P and �bad� states Fb � Q�fbg� It is readily
noted that� since L�H� � ��� it follows that L�F� � L�R�� Thus� F constitutes a model
of the process� and the speci�cation is modeled as the subprocess of F that consists of all
trajectories whose corresponding states do not intercept Fb� In some applications� the system
may be given directly as a nondeterministic process �or automaton� F with the speci�cation
as a sub	process� In this latter case the above procedures for obtaining F can be omitted�

We next use the procedure Extend� given in the previous section� to �lift� F to a deter	
ministic automaton �F by adding a set �� of unobservable events� The set of good states �Fg

and bad states �Fb in �F are de�ned accordingly� Thus� we obtain

�F � �� � ��� �F � ��� fo� �Fb��

where

�Fb � Fb � �� �F � F � � f���q� �� � j��q� ��j 	 � � ��q� �� � �F � Fb� � ��g�

De�ne the �legal� language E � L� �F� to be the set of all traces that visit only good
states in �F�

E � fs 	 L� �F� � �
t � s����xo� t� �	 �Fbg�

Clearly� det�E�n�� � H�
With these preparations� we can now state a necessary and su�cient condition for the

existence of a supervisor where in the following theorem� observability is de�ned for � �
� � �� and �uo � ���

Theorem � For R and H given as above� there exists a supervisor � such that ��R � H if
and only if E is controllable and observable with respect to L� �F��

The above theorem shows that we can translate a supervisory control problem for a non	
deterministic system into a supervisory control problem for an lifted deterministic system�
We can �rst synthesize �� for the deterministic system and then �easily� obtain � from �� for
the nondeterministic system by letting ��s� � ���s���� The signi�cance of this result is that
all the methodology developed for deterministic systems can now be applied to nondeter	
ministic systems� In particular� if E is not controllable and observable� then the best we can
do is to design a supervisor using the following
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Example � The projection of the process R � cl�fbg� a� fag� b� fa� bg� on fbg is Rnfag �
cl��� b� fbg� which is deterministic� Note� however� that the projection of the trajectory
t � �fbg� a� fag� b� fa� bg� is tnfag � �fbg� b� fbg� which is not valid�

Consider a nondeterministic automaton� possibly with ��transitions�

R � �� � f�g� Q� �� qo�

over the event set �� We introduce now a procedure for constructing a deterministic au	
tomaton

�R � �� � ��� �Q� ��� qo�

over an extended event set � � ��� such that R � �Rn�� � That is� �R reduces to R upon
replacing by �	transitions all its transitions labeled by events in ��� The procedure is based
on �rst extending R to a standard nondeterministic automaton with ��transitions� and then
replacing the � labels by labels from the event set �� � f
�� 
�� ���g�

Procedure Extend�R� �R�

�� �Q �� Q�


� For each q 	 �Q and � 	 �� If j��q� ��j 	 �� add one more state� q� and add ��transitions
as follows�

�Q �� �Q � fq�g� ���q� �� �� fq�g� ���q�� �� �� ��q� ���

else set

���q� �� �� ��q� ���

�� For each q 	 �Q� replace the ��transitions by transitions labeled 
�� 
�� ��� as follows� If
���q� �� � fq�� ���� qng� then set

���q� 
�� �� fq�g� ���� ���q� 
n� �� fqng�

� Supervisory control� closed case

In this section� we consider the supervisory control of closed nondeterministic systems� that
is� we assume every state is marked and we do not consider the issue of blocking� The general
�nonclosed� case has also been investigated and will be considered in ����

We allow both the system and the speci�cation to be nondeterministic� that is� to be
modeled by trajectory models or nondeterministic automata� We shall denote the system
and speci�cation by R and H� respectively� where the nondeterministic automaton of H is
given by

H � �� � f�g� P� �� p���

Naturally� we shall require that � �� L�H� � L�R��
Control is achieved as usual by a supervisor � � L�R� � 
�c � The supervised system is

denoted by ��R� To formally obtain ��R� we �rst compute the language L���R� as de�ned
in Section 
� The behavior of the supervised system is then described by

��R � Rjjdet�L���R���
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whenever Q � P� �In particular� it is shown in �
� that P can then be thought of as evolving
into Q through ��transitions ��

For each trajectory model� we can construct a corresponding nondeterministic automaton
with �	transitions� using the algorithm in �
�� Similarly� for each nondeterministic automaton
with �	transitions� it is easy to construct a corresponding trajectory model by �rst identifying
for each state a maximal�refusal�set and then associating with each ��stable path ��� a
corresponding dominant trajectory� Therefore� we can use either the trajectory model or its
associated nondeterministic automaton to model a nondeterministic system� Henceforth� in
this paper� we shall use the same symbol R to denote both the nondeterministic automaton
and the trajectory model of a process� The languages generated and marked by R are
denoted by L�R� and Lm�R� respectively�

� Nondeterminism and unobservability

Let �R be a process over the event set ����� where �� is the set of unobserved internal events�
In other words� an external observer �e�g�� a supervisor� of �R can observe the events in �
but not events in ��� To obtain a suitable model for the partially observed process� we de�ne
a projection �or internalization� operator ��� � 
���

�

� ��� � ����
���
�

�
�
� 
� � ���
��

�

as follows�
For a trajectory

t � �Xo� ����X��� ���� ��k�Xk��

the projection tn�� � ����t� is obtained from t by the following procedure�

�� Delete from t all occurrences of event symbols that belong to �� �both as executed
events and refused events�� Thus� each refusal set Xi becomes Xi � ���


� Replace all consecutive refusal sets whose associated execution event symbols have
been deleted� by their union� That is� if �in t� �i�� 	 � and �i� �i��� ���� �l 	 ��� then
replace Xi�� � �� by �Xi�� � ��� � �Xi � ��� � ��� � �Xl � ����

In general� the trajectory tn�� thus obtained may not be valid� �Recall that a trajectory is
valid if �j �	 Xj�� for all j�� The projection �Rn�� of a process �R is a obtained as a subset

of the set of valid trajectories projected from �R� as de�ned in �
� ����� An alternate way to

obtain the projection is to view R as a nondeterministic automaton� in which case �Rn�� is
obtained from R by replacing in it all events �	�� by ��

Let �R be a deterministic process over � � ��� We de�ne the observability of �R in terms
of L�G� � �� � ����� � � � and �uo � ��� that is� �R is observable if

�
s� s� 	 L� �R��Ps � Ps�  �
� 	 ���s� 	 L� �R� s�� 	 L� �R��

where P is the projection from �� � ���� to ���

Let R be the process obtained by projecting �R on �� that is� R � �Rn��� Then the
observability of �R is related to the determinism of R as shown in the following two theorems�

Theorem � If �R is observable� then R is deterministic�

Theorem 	 If �R is unobservable and every trajectory obtained from its projection is valid�
then R is nondeterministic�

�The detailed de�nition of the projection of a process is omitted here because of space limitation�
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De
nition � � A �possibly� nondeterministic process P is a closed and saturated subset
P � 
� � ���
��

�
of valid trajectories�

The saturation condition on the set of trajectories of a process implies that if an event is
impossible it will be refused� �We shall later see that while in nondeterministic processes
events need not be impossible to be refused� in deterministic processes events are refused if
and only if they are impossible��

Let T be a set of trajectories� We say that a trajectory t 	 T is dominant in T if there
is no trajectory t� 	 T � t� �� t� such that tvt�� The set of all trajectories that are dominant
in T is called the dominance set of T and is denoted dom�T �� A trajectory in T is called
maximal if it is dominant and there is no trajectory t� 	 T such that t�t�� The subset of all
maximal trajectories in T is called the maximal set of T and is denoted max�T ��

The following Theorem states that a process P is completely characterized by its domi	
nance set�

Theorem � Let P be a process� Then cl�dom�P�� � P�

We are now ready to de�ne a deterministic process in the trajectory model setting�

De
nition � A process P is called deterministic if for every trajectory �X�� ����X�������k�Xk��
	 P and any � 	 �

�X�� ����X�������k�Xk���� ���	P � �X�� ����X�������k�Xk � f�g���	P�

Thus� a process is deterministic whenever events are refused if and only if they are impossible�
Now� let L � �� be a pre�x	closed language �set of traces� and consider the class of all

trajectory models that share L as their trace set� We note that this set is never empty and
construct the following trajectory model� denoted det�L�� that belongs to this class�

Algorithm � Construction of det�L��

�� ��� ��	det�L��

�� Proceed by induction on string length
 For t � �X�� ����X�������k�Xk��	det�L� and
� 	 ��

�X�� ����X�������k�Xk � f�g��	det�L�� tr�t�b� �	det�L�
�X�� ����X�������k�Xk���� ���	det�L�� tr�t�b� 	 det�L�

The following theorem summarizes our preceding discussion and characterizes determin	
istic processes �
� ��
��

Theorem � Let P be a process and let L�P� be its trace set� Then P is deterministic if
and only if for every process Q such that L�Q� � L�P��

P � det�L�P���Q�

Thus a deterministic process is uniquely de�ned by its associated trace set and� in fact�
is the smallest process associated with a given trace set�

In view of the preceding discussion it is clear that if P and Q are two processes de�ned
over the same event set �� we are justi�ed in saying that P is more nondeterministic than Q

�The above de�nition is a simpli�ed version of De�nition ���� in ��� since we deal here only with
termination�free nondivergent processes� The concepts of termination and divergence are discussed in detail
in ���� Intuitively� a process is divergent if it can engage in an unbounded string of unobserved transitions�





the system might have rejected �or refused�� if o�ered� after each successful event� Thus� a
trajectory is an oject in 
� � ���
��

�
of the form

t � �X�� ���X�� ����Xk��� �k�Xk�

where �i denotes the ith executed event� and Xi� the ith refusal� denotes the set of events
refused after the ith executed event� The initial refusal X� is the set of events that are
refused before any event is executed� We call the integer k the length of t� denoted jtj� and
the trace associated with t is de�ned as

tr�t� � ������k�

A trajectory is called valid if for all i 	 �� �i �	 Xi�� �that is� an event cannot be executed
if it has just been refused��

Let t be a trajectory given by

t � �X�� ����X�������k�Xk���

A trajectory r is a pre�x of t� denoted r�t� if

r � �X�� ����X�������j�Xj��

and ��j�k� The trajectory r is called a proper pre�x of t if j � k� We denote the pre�x
of length j of t by prefj�t� �so that pref��t� � �X�� ��� where � denotes the empty string�
and prefk�t� � t�� The set of all pre�xes of t is called the pre�x�closure of t and is denoted
pref�t��

A trajectory r is said to be dominated by t� denoted rvt� if it is of the form

r � �Y�� ���� Y�������k� Yk���

with �i � �i for ��i�k and Yj�Xj for ��j�k� The set of all trajectories dominated by t is
called the completion� or dominance�closure� of t and denoted comp�t��

Finally� we de�ne the closure of t� denoted cl�t�� as

cl�t� ��
S

v�comp	t
 pref�v�

and the closure of a set of trajectories T � is given by

cl�T � ��
S

t�T cl�t��

A set of trajectories T is closed � if

T � cl�T ��

We say that a set of trajectories T is saturated� if the following condition holds�

�
k � �� 
� �����
j � � � j � k��
� 	 ��Xj�
���X�� ����X�������k�Xk�� 	 T � �X�� ����X�������j�Xj���� ����	T �
 �X�� ����X�������j�Xj � f�g������k�Xk�� 	 T ��

We are now in a position to de�ne a �nondeterministic� process through its associated set
of trajectories� Intuitively� we identify a process P with the set of all trajectories associated
with possible runs of P� More formally� we have the following

�A closed set of trajectories is always nonempty since it includes the null trajectory 	�� �
�
�Note that the term �saturated� as de�ned here is dierent from the way it was used in �����
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s	PL�G�� the events � 	 ��s� are disabled by the supervisor� The languages generated and
marked by the supervised system are denoted by L���G� and Lm���G� � L���G� � Lm�G�
respectively� where L���G� is given recursively by

� �	L���G�


 �
s	L���G���
�	��s�	L���G��s�	L�G��s	L���G� � � �	��s��

We say K is closed if it equals its pre�x closure K � K and K is Lm�G�	closed if
K � Lm�G� �K� We also de�ne controllability and observability as follows ���� ����

De
nition � A language K � L�G� is controllable �with respect to �uc� if

�
s 	 K��
� 	 �uc�s� 	 L�G� s� 	 K�

De
nition � A language K � L�G� is observable �with respect to � and �uo� if

�
s� s� 	 K�Ps � Ps�  �
� 	 ���s� 	 K � s�� 	 L�G� s�� 	 K��

The controllability and observability characterize the existence of a supervisor as proved
in ��� and summarized in the following theorem�

Theorem � Let K � L�G� be non�empty� Then there exists a supervisor � such that
L���G� � K if and only if K is closed� controllable and observable�

Another useful concept is normality which is de�ned as follows ����

De
nition � A language K � L�G� is normal if

�
s 	 L�G��Ps 	 PK  s 	 K�

One important fact regarding the relation between observability and normality is the
following theorem� which is basic to our development in this paper ����

Theorem � Assume �c � �o� Then a language is controllable and observable if and only
if it is controllable and normal�

A nice property of controllable �normal� languages is that they are closed under union�
So let C�E� �N �E�� CN �E�� respectively� denote the set of controllable �normal� controllable
and normal� respectively� sublangauges of E� then we have ��� ����

Theorem � The supremal elements supC�E�� supN �E�� and supCN �E� exist and they
preserve the properties of closeness and Lm�G��closeness�

� Nondeterminism

In this section we brie�y review the trajectory	model formalism of �
� �see also ��
�� that
has been developed as the basic tool for modeling and analysis of nondeterministic discrete
event systems�

Just as the trace s 	 L�G� � �� is a record of the string of events executed in a given run
of a system G� the trajectory is also a record associated with a run of G� It is more detailed
than the trace in that it lists� in addition to the successfully executed events� also events that

�



at least as powerful as the corresponding supervisor that is based only on knowledge of the
projected plant and speci�cation� This is because the nondeterministic �projected� model
�and speci�cation� can be derived from the deterministic model �and speci�cation� while the
converse is not generally true� Indeed it can be shown� that under certain circumstances� the
deterministic partial observation setting is strictly more powerful than the nondeterministic
counterpart� Conversely� one may be given a nondeterministic model� along with a deter	
ministic or nondeterministic speci�cation� as the basis for synthesis of a supervisor� One can
then try to attack the problem directly in the nondeterministic setting or� alternatively� one
can view the problem as a consequence of a deterministic framework that appears to be non	
deterministic because of the internalization �unobservability� of some hypothetical events�
In the latter case� the supervisor could have been designed by the conventional framework
of control under partial observation� A natural question that arises is whether the two ap	
proaches lead to the same results� It is the focus of the present paper to investigate in detail
the above raised issues�

We �rst brie�y review the theory of supervisory control of discrete event systems under
partial observation and recall the main relevant results on the existence of supervisors and
some common procedures for supervisor synthesis� We also review in some detail the main
concepts of nondeterministic discrete event systems and their representations� and reexam	
ine the relation between the trajectory models and their corresponding nondeterministic
automata� It is then shown that if the language describing a deterministic system is ��	
observable� then the projection of the system is deterministic� On the other hand� if the
language is unobservable� its projection is not necessarily nondeterministic as can be shown
by example� However� we prove that if all trajectories of the projected system remain �valid��
then the projected system is nondeterministic�

Next� a �lifting� formalism is derived by which the nondeterministic system is translated
�or lifted� to a certain deterministic system by introducing hypothetical events �that are
assumed to be the internalized events whose unobservability led to nondeterminism�� The
lifted system is constructed so that its projection yields back the original nondeterministic
system� It is then easily seen that the language obtained by the lifting of any language that
is de�ned over the original event set to the extended event set of the lifted system� is normal
with respect to the lifted system� This fact immediately implies that there is a very natural
correspondence between optimal supervisors obtained for the lifted system to satisfy a normal
language speci�cation under partial observation� and supervisors for the nondeterministic
system designed to satisfy deterministic �language� speci�cations� Speci�cally� a necessary
and su�cient condition for satisfying a language speci�cation by supervisory control of a
nondeterministic system� is controllability of the language� This result has been previously
obtained in ��
� via a supervisory control theory of nondeterministic systems� While the
direct derivation of this result in the nondeterministic framework is far from being trivial� it
is straightforward in the proposed setting� In the present paper we examine nondeterministic
systems with both deterministic and nondeterministic speci�cations in the closed case� The
general �nonclosed� case will be discussed elsewhere ����

� Supervisory control under partial observation

Let us now review the basic results of supervisory control for deterministic systems under
partial observation� The uncontrolled system is described by a �deterministic� automaton
G � ��� Q� �� qo� Qm� with its elements de�ned in a usual way� The languages generated and
marked by G are denoted by L�G� and Lm�G� respectively� The event set is partitioned
into controllable �observable� and uncontrollable �unobservable� event sets� � � �c ��uc��
�o � �uo�� A supervisor is a disablement map � � PL�G� � 
�c �where P � �� � ��

o is
the projection that deletes the unobserved events� such that following an observed trace
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Abstract

The control of partially observed discrete event systems has received a great deal of
attention in the literature� Necessary and su�cient conditions for existence of supervi�
sors� algorithms for supervisor synthesis� for o��line as well as on�line implementation�
have been obtained� and a wide variety of important questions have been investigated�
In recent years� a related problem has been receiving increasing attention in the lit�
erature� that is� the supervisory control problem of nondeterministic discrete event
systems� While it is widely understood that partial observation may lead to non�
determinism� the theory of nondeterministic supervisory control has evolved along a
completely di�erent avenue than the theory of partially observed systems� Also� while
some existence conditions for control of nondeterministic systems have been derived�
few explicit algorithms for supervisor synthesis have been obtained� More importantly�
the precise connections between the two frameworks have never been examined in
detail� In the present paper we investigate the problem of supervisory control of non�
deterministic discrete event systems from the point of view of control under partial
observation� We carefully examine the relation between the two frameworks and we
derive algorithms for supervisor synthesis for nondeterministic systems under a wide
variety of conditions� In the present paper we examine nondeterministic systems with
both deterministic and nondeterministic speci�cations in the closed case� The general
�nonclosed	 case will be discussed elsewhere 
���

� Introduction

Since the introduction of observability ���� a great deal of work has been done on the control
of partially observed discrete event systems� Necessary and su�cient conditions for existence
of supervisors� algorithms for supervisor synthesis� for o�	line as well as on	line implemen	
tation� have been obtained� and a wide variety of have been investigated� In recent years a
related problem has also been receiving increasing attention� that is� the supervisory con	
trol problem of nondeterministic discrete event systems� In this setting� a system is given
either as a nondeterministic automaton �with �	transitions� or as a trajectory model ��� �
�
�see also ��� ��� ���� ��
��� The speci�cation of legal behavior of such systems can be given
either in a deterministic or in a nondeterministics setting� The supervisory control problem
is to synthesize a supervisor that restricts the nondeterministic plant so as to satisfy the
corresponding speci�cation�

While it is widely understood that partial observation may lead to nondeterminism�
the theory of nondeterministic supervisory control has evolved along an independent and
completely di�erent avenue than the theory of partially observed systems ��
� ���� Also�
while some existence conditions for control of nondeterministic systems have been derived�
few explicit algorithms for supervisor synthesis have been obtained� More importantly� the
precise connections between the two frameworks have never been examined in detail�

It is intuitively clear that if one were given a deterministic model� a deterministic speci�	
cation of legal behavior� and a partial observation map� one could design a supervisor that is
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